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Abstract. Cloud computing promises to provide computing power as a
utility and the adaptability to application requirements is one of its key
benefits. However, using cloud infrastructures still requires a lot of tech-
nical expertise, which becomes a burden especially for non-computer sci-
entists. Therefore, using model-driven approaches seems promising and
can help to lower this burden by raising the level of abstraction. To
achieve the correct scale of the cloud resources, a mechanism is required
to map the computational requirements of the users domain model to
parameters of the cloud infrastructure. In this paper, we present a frame-
work, which scales the required infrastructure according to the demands
of the users domain model. The framework utilizes a metamodel based
on the Topology and Orchestration Specification for Cloud Applications
(TOSCA) for modelling the cloud applications. Additionally, we intro-
duce a domain-specific language to define a mapping between domain
model parameters and parameters of the cloud infrastructure to achieve
an appropriate scale.

Keywords: model driven engineering, cloud orchestration, TOSCA

1 Introduction

Due to its elasticity and on-demand self-service characteristics, cloud comput-
ing [1] is a great solution for users with varying computational requirements.
However, setting up, running and scaling applications and the required infras-
tructure in the cloud is a cumbersome and error-prone task. Therefore, methods
and tools are needed that simplify the process and lower the entry-barrier espe-
cially for non computer-scientists. With help of model driven engineering (MDE),
the level of abstraction is raised and domain specific languages (DSLs) help to
simplify tasks by focusing on the vocabulary of a certain domain. With MDE
also the problem of API-heterogeneity of different cloud providers, often called
cloud-provider lock-in, can be tackled [2], and graphical tools for modelling cloud
infrastructures can be provided [3], [4]. In combination with the templates and
scripts used by cloud orchestration and configuration management tools, fully
automated, model driven deployment of cloud applications becomes possible.
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These methods can be used for example to provide preconfigured computational
resources to simulations scientists on demand. However, the appropriate scale of
the infrastructure largely depends on what the scientist wants to compute. For
example, an algorithm might require a certain amount of RAM in the deployed
virtual machines (VMs), or the number of entities in a simulation might require
a certain number of cores to be computed efficiently. These parameters are en-
coded in the domain model of the scientist, which comprise all digital artefacts,
the scientist created to solve a certain research problem. We argue that the scale
of the provided infrastructure should be able to adapt to the computational re-
quirements of the domain model of the scientist automatically.

To tackle this problem, we defined a framework [5] to be able to scale the cloud
infrastructure with the help of parametrized deployment models of the users
application based on the Topology and Orchestration Specification for Cloud
Applications (TOSCA) [6]. In this paper, we introduce a DSL for the mapping
between the domain model of the user and the deployment model to define its
correct scale.

The remainder of this paper is structured as follows. After providing the foun-
dations of this work in Section 2, we provide a driving example in Section 3. We
discuss our framework in Section 4 and introduce the DSL for the mapping in
Section 5. We evaluate the approach with help of a case study on the driving
example in Section 6. Related work is given in Section 7. Finally, we draw our
conclusions and give an outlook on future work in Section 8.

2 Automated Cloud Application Deployment

To define cloud computing, we refer to the definition given by the National In-
stitute of Standards and Technology (NIST) [1]: “Cloud computing is a model
for enabling ubiquitous, convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers, storage, applica-
tions, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction.” Thereby, NIST defines three
service models for cloud computing, which operate on different levels of ab-
straction. On the highest level of abstraction is Software-as-a-Service (SaaS),
where fully fledged applications are delivered to the user e.g., via a web-browser.
Below that, Platform-as-a-Service (PaaS) offers programming environments or
platforms such as pre-configured databases as services. On the lowest level of
abstraction the user is able to directly acquire computing resources (e.g., virtual
machines, virtual network, and virtual storage) on demand via Infrastructure-as-
a-Service (IaaS). To offer higher level services such as PaaS and SaaS on top of
TaaS, cloud providers can rely on automation achieved with cloud orchestration
and configuration management tools, which we will discuss in the following.
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Fig. 1. TOSCA metamodel (adapted from Bergmayr et al. [4]).

2.1 Cloud Orchestration

To be able to manage and reuse configured resources in the cloud, cloud or-
chestration tools have emerged. Since many different cloud-provider dependent
definitions of the term exist and it lacks of widely accepted definition, we will
use the following definition in the scope of this paper:

Cloud Orchestration refers to the automated launch and life-cycle management
of resources e.g., VMs, virtual storage, or virtual networks in the cloud. It
also assigns software configurations to the defined resources, without defining
the installation process or the configuration of the software itself. Cloud or-
chestration tools often provide additional functionality for automatic (event-
based) scaling of the deployed infrastructure.

Cloud Orchestration tools use template languages that allow to define the topol-
ogy and also the life-cycle operations on the topology in a reusable manner.
Examples include the language of Amazons CloudFormation [7] and the Heat
Orchestration Template (HOT) language of OpenStacks Heat orchestrator. The
Organization for the Advancement of Structured Information Standards (OASIS)
aims to standardize such a template language with the Topology and Orchestra-
tion Specification for Cloud Applications (TOSCA) [6]. The first version of the
standard based on the Extensible Markup Language (XML) was originally pub-
lished in 2013, while a draft of a simplified rendering based on YAML Ain’t
Markup Language (YAML) [8] was first published in 2015 and is still under de-
velopment.

A simplified metamodel of TOSCA is depicted in Figure 1. A ServiceTemplate
captures the structure and the life-cycle operations of the application. It con-
sists of a Topology Template and a Plan. Plans define how the cloud application is
managed and deployed. TopologyTemplates contain Entity Templates, which are
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either NodeTemplates that define e.g., the virtual machines or application com-
ponents, Relationship Templates that encode the relationships between the Node-
Templates, e.g., that a certain application component is deployed on a certain
virtual machine, or GroupTemplates' that allow to define groups of NodeTem-
plates, which e.g. should be scaled together. EntityTemplates have Properties,
e.g., the TP address of a virtual machine, and a certain type that references
an EntityType. The EntityType defines the allowed Properties through Prop-
ertyDefintions, and have Interfaces, which define the Operations that can be
executed on the type, e.g., the termination of a certain application component,
or the restart of a virtual machine. Operations have Parameters that define their
input and output. In addition to parameters for operations, TOSCA also allows
to define input parameters for Plans. These parameters can be used to param-
eterize the deployment workflow of the model and can e.g., include the virtual
machine type to use or the number of instances of a certain type to launch.

2.2 Configuration Management

To enforce a certain software configuration on the resources defined above, Con-
figuration Management tools are used. We use the following definition of the
term in scope of this paper:

Configuration Management refers to the automated and reusable enforcement
of a certain software configuration on several machines. It comprises the
configuration of the operating system, the installation and configuration of
software and the configuration, launch, and termination of services.

Configuration Management tools became popular with the rise of the DevOps
movement [9] in recent years. They use declarative domain specific languages
to define the desired software configuration in a reusable manner. Examples
are the language used in Puppets [10] manifests or the language that defines
Ansibles [11] playbooks. In Ansible, playbooks are based on YAML and define
tasks that should be executed on a group of hosts. The following listing shows
the definition of the software configuration for a webserver with Ansible:

1 - hosts: webservers

2 vars:

3 http_port: 80

4 tasks:

5 - name: ensure apache is at the latest version

6 yum: name=httpd state=latest

7 - name: write the apache config file

8 template: src=/srv/httpd.j2 dest=/etc/httpd.conf

! GroupTemplates and GroupTypes are currently part of the TOSCA YAML speci-
fication, but not part of the TOSCA XML specification. We included them in the
metamodel, because we need their functionality to for modeling scalability in our
deployments.
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The configuration is enforced on the hosts in the group webservers (Line 1),
the http port is set with help of a variable (Line 3). In the first task (Line 5),
an Apache webserver is installed with help of the package manager yum, and in
the second task (Line 7) a template for the server configuration is copied to the
hosts. Additionally, tasks can be encapsulated to form roles, and several roles
can be assigned to a host or a group of hosts.

3 Driving Example

Our driving example originates from material science and uses the Open Field
Operation and Manipulation (OpenFOAM) [12] software package. It exemplifies
a case where the domain model of the scientist has an influence on the required
scale of the cloud resources. OpenFOAM is a extensible C++ toolbox for solving
systems of numerical equations, primary from the domain of computational fluid
dynamics on a predefined environment. It has a large user base both from in-
dustry and academia and can be executed across large-scale High Performance
Computing (HPC) clusters using the Message Passing Interface (MPI). Typ-
ically, using OpenFOAM involves three steps. In the Pre-processing step, the
mathematical model, the description of the domain, on which the model should
be solved, and a mesh, which describes the decomposition of the domain for com-
putation is defined. In the Solving step, user-defined or predefined solvers are
used to solve the mathematical model on the domain, and in the Post-Processing
step additional tools can be used to visualize and analyse the created solutions.
We will refer to the artefacts created by the scientist as the domain model, which
in case of OpenFOAM consists of the following parts:

1. The geometry of the domain on which the mathematical model should be
solved and how the mesh on this domain is created.

2. The initial and boundary conditions for the problem for each parameter.

3. The physical properties for the system of partial differential equations (PDESs)
to be solved.

4. The control of the simulation, such as the simulation time and the reading
and writing of the solution.

5. A domain decomposition that describes how the domain should be decom-
posed for parallel computation.

Regarding a suitable scale of the infrastructure, information on how many worker
nodes can be utilized are encoded in the domain decomposition. Information on
how much storage is needed is influenced by the total length of the simulation
and the frequency with witch simulation data is written do disk.

We use OpenFOAM to exemplify the usage of our framework, which uses
a combination of MDE, cloud orchestration and configuration management to
automatically provision and scale the cloud infrastructure.
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Fig. 2. A framework for adapting application deployments according to domain model
demands.

4 The Framework

An overview of our framework and a possible instantiation for our driving ex-
ample is depicted in Figure 2. We will discuss its components in the following.
In this paper we focus on the role of the evaluator and the static evaluation of
the domain model.

4.1 Domain Model

Domain models come in very different formats, they even might consist of code
that is later on compiled and linked to external libraries. In most cases, no
formal metamodel for the domain is available. In case of OpenFOAM, the parts
of the domain model described in Section 3 are encoded in text files that have a
OpenFOAM specific format.

4.2 Computation Framework

The computation framework (CF) represents the required software for executing
the domain model and its dependencies. It is the most restrictive component for
the cloud deployment, since it encodes how the computational load is distributed
on the underlying infrastructure and defines the needed soft- and hardware con-
figuration. In the driving example, OpenFOAM and its dependencies represent
the CF. OpenFOAM uses MPI for distributed computation, hence it requires a
MPI cluster to run and distribute the computational load.
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4.3 Deployment Models with TOSCA

With the given template/type of mechanism TOSCA and its ability to define
input parameters, we can distinguish between two types of deployment models:
We call a model with unset parameters abstract and a model with instantiated
parameters concrete. The transformation from an abstract model into a con-
crete model is called instantiation. The appropriate setting of the parameters
for the deployment during the instantiation process, is done with the help of
three sources: the user, static information from the domain model, and runtime
information from the CF.

The deployment model for the CF comprises three elements: a cloud orches-
tration template, configuration management scripts and a description on how
the domain model parameters are mapped to parameters of the infrastructure
used by the evaluator. We introduce the language for the mapping in Section 5.

The abstract deployment model for the OpenFOAM cluster is shown in Fig-
ure 3. Since there is no standardized graphical syntax for TOSCA available,
we use the following notation: NodeTemplates are depicted by boxes with solid
lines, RelationshipTemplates are visualized by connections between the boxes,
and GroupTemplates are depicted with boxes with dashed lines. For the Node-
Templates and the Groups we additionally list the type and a subset of the
Properties. One virtual machine serves as a gateway node. This node gets a
public IP address (floating IP) assigned and is reachable from the outside of
the cloud. The gateway node is connected to an extra volume which provides
the storage for the simulation data. An arbitrary number of virtual machines
is deployed to serve as worker nodes in the cluster to do the calculations. The
gateway node exports its volume via a Network File System (NFS), which is
then mounted and shared by the worker nodes. The software configuration for
the gateway and mpiworker nodes is modeled with help of a NodeTemplate of
type ansible.nodes.Application. With help of these NodeTemplates the corre-
sponding Ansible roles for the software configuration are associated to the host
in which the NodeTemplate is contained. Since the software configuration for
the worker nodes is dependent on the software configuration of the gateway,
we use an additional depence_on relationship between the Ansible nodes. In the
abstract deployment model, several parameters can be adjusted to provide an
appropriate scale for the required computational power. Hence, the following
parameters are kept as input parameters of the model:

P1: The size S of the NFS.

P2: The virtual machine type T of the gateway and worker nodes. The virtual
machine type or virtual machine flavor is the common way of TaaS providers
to encode the hardware configuration of a virtual machine. This includes
RAM size, number of compute cores, and disk space.

P3: The number of worker nodes N. MPI can be used to distribute computation
across a single machine with multiple cores, or across multiple machines.
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swe.instances.gateway ‘f swe.instances.scalinggroup
type = ansible.nodes.Application | type = swe.groupsScalingGroup
roles = [ nfsserver, mpimaster, openfoamuser | } instances = { get_input: worker_instances }
T |
contained_in depends_on | swe.instances.mpiworker
type = ansible.nodes Application
. . ] [ _ roles = [ nfsclient, mpiworker, openfoam ]
swe.instances.floatingip swe.instances.gatewayhost

i_to.
type = cloudify.openstack.nodes.FloatinglP type = cloudify.openstack.nodes.Server
flavor = { get_input: flavor }

T
contained_in

swe.instances.mpihost
connected_to

type = cloudify.openstack.nodes Server

swe.instances.volume flavor = { get_input: flavor }

type = cloudify.openstack.nodes.Volume
size = { get_input: size }

Fig. 3. Abstract Deployment Model for OpenFOAM.

4.4 Evaluator and Monitor

To find suitable parameter settings that match the requirements of a domain
model, we distinguish between static evaluation, whereby the CF is not exe-
cuted in the cloud, and dynamic evaluation, whereby the CF is executed and
monitored. The static evaluation is performed before the CF is deployed on the
cloud infrastructure and to derive its initial appropriate scale. We implement
the static evaluation with help of the evaluator. This evaluator maps values of
parameters of the domain model to suitable parameter settings for the concrete
deployment model. This mapping is domain specific and needs to be defined for
each domain separately. For this purpose, we defined a small DSL, which will be
presented in Section 5.

Dynamic evaluations are done by monitoring the execution of the CF with
help of a monitor. According to the outcome of the deployment evaluation, the
parameters that have been used for the initial deployment are readjusted and
a new instantiation of the abstract deployment model is initiated. Hereby, ei-
ther a new concrete deployment model is created and deployed, or the existing
concrete deployment model and its instantiation is adjusted. Dynamic evalua-
tion and adjustments of a deployed infrastructure is nowadays implemented by
many cloud orchestrators with their ability to process scaling policies that de-
fine under which conditions certain actions are automatically triggered on the
infrastructure. For example, if the number of accesses on a webserver exceeds a
certain threshold (condition), deploy an additional webserver (action). While it
is worthwhile to investigate, if parts of these scaling policies can be derived from
the domain model and the abstract deployment model of the CF, we focus on
the determination of the appropriate scale for the infrastructure before the CF
is deployed in scope of this paper.

4.5 Automated Deployment

The deployment of the CF is fully automated to avoid manual interaction with
the cloud and enable transparent deployment of the CF for the user. A cloud
orchestration framework is used for the orchestrated launch of the infrastructure
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Fig. 4. Metamodel of the mapping language.

and a configuration management tool is utilized to automatically configure the
launched infrastructure. As depicted on the right hand side in Figure 2, we use
the cloud orchestrator Cloudify and the configuration management tool Ansible
to automatically deploy the CF on a private OpenStack [13] cloud.

5 Mapping Domain Model Parameters to Infrastructure
Parameters

Since the domain models come in very heterogeneous formats and in most cases
lack of a formal metamodel, it is not possible to define a formal model trans-
formation from the domain model to a model that is executable on the infras-
tructure. Instead, our approach is to provide a mapping mechanism, that is able
to describe how parameters of the deployment model can be computed from
extracted parameters of the domain model.

To be able to define the mapping for the evaluator, we developed a DSL which
we will discuss in the following. The metamodel for the mapping language is
depicted in Figure 4. A Mapping consists of a TargetParameter and an Ezx-
pression. Hereby, the TargetParameter represents a parameter of the abstract
deployment model and the Ezxpression describes how the value for this param-
eter can be extracted from the domain model. The Comperator describes the
relationship between the TargetParameter and the Expression. It can be e.g.,
of type EQUAL, to define that the TargetParameter must match the outcome
of the Expression. Expressions can be unary, binary, simple parameters, of type
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Extractor, or Mapper. Extractors encode how parameters are extracted from
Sources of the domain model, which can either be files or folders. Fxtractors
contain a recipe, which define additional information on how a parameter is ex-
tracted from a source. Mappers define how the extracted values are mapped
to target parameters. They implement logic, where parameters of the domain
model require a setting of the deployment model, which can not be derived au-
tomatically from the extracted value, e.g., a certain number of cores might be
required for computation, but the deployment model does only allow to set the
flavor of the VMs, and not the number of cores directly.

For the time being, we defined basic Extractors, that extract information from
the structure of the domain model e.g., the number of files the model consists
of, and their size. We also defined Extractors that extract file content, e.g., the
number of lines in a file, and the ability to extract information with help of a
regular expression (FileContentExtractor). Since our target IaaS system Open-
Stack does not allow to determine a fitting VM flavor for a given number of cores
automatically, we defined a Mapper that maps compute cores to the VM flavor
(FlavorMapper) and the other way around (CoreMapper). Additional domain-
specific Extractors and Mappers can be defined and implemented that inherit
from the corresponding base classes. We exemplify the usage of the language in
Section 6.3.

6 Evaluation

We prototypically implemented the evaluator based on the language introduced
above and the instantiation process to evaluate the framework. We now investi-
gate if we are able to derive an appropriate scale of the deployed infrastructure
with the introduced framework. To evaluate the mapping mechanism on our
driving example, we require different domain models for OpenFOAM. The tu-
torial data for OpenFOAM 2.4.0% comprise around 200 domain models. For the
evaluation of our framework and the mapping we picked six domain models with
different computational requirements. The selected domain models are given in
Table 1. Even if these tutorial domain models are small in comparison with
realistic OpenFOAM simulations that require large-scale HPC clusters to be
computed, they are suitable to test our framework.

6.1 Implementation

We prototypically implemented our framework with help of the Eclipse Modeling
Framework (EMF) [14]. We used the XML Schema Definition (XSD) of TOSCA
to generate an Ecore-metamodel. This metamodel served as a basis for code gen-
eration for the implementation of the evaluator and the instantiation process.

2 Available online at https://github.com/0penFOAM/OpenFOAM-2.4.x/tree/master/
tutorials.
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Table 1. Selected cases from OpenFOAM tutorial data.

Domain Model Required Cores

multiphase/twoPhaseEulerFoam /laminar/mixerVessel2D /
heatTransfer /buoyantBoussinesqSimpleFoam/iglooWithFridges/
multiphase/multiphaselnterFoam /laminar/damBreak4phaseFine/
combustion/fireFoam /les/oppositeBurningPanels/
multiphase/interDyMFoam /ras/DTCHull/
multiphase/interDyMFoam /ras/test TubeMixer/ 1

DU W N
D0 N

EMF was also used for the definition and implementation of the mapping lan-
guage. The utilized cloud orchestrator Cloudify currently supports only a subset
of the functionality of TOSCA and is additionally not completely compliant with
the standard. We used the Eclipse Epsilon Generation Language (EGL) [15] to
generate Cloudify compliant YAML templates from our TOSCA metamodel.
TOSCA is still subject to change and the development of the TOSCA YAML
version is a little ahead of the TOSCA XML version. Since the TOSCA YAML
version introduces some new features that are not yet reflected in the TOSCA
XML schema, we added the desired features to our generated Ecore-metamodel
manually. Hereby, we added GroupTypes and GroupTemplates, that allow to
group NodeTemplates and the ability to set concrete values for Parameters.

6.2 Metrics

We aim to produce deployments that are efficient. We call a deployment efficient
if it neither utilizes more nor less resources than actually needed. To measure
the efficiency of the deployment, we use the following metrics to detect if too
many or to few resources were provisioned:

M1: Average load on the provisioned cluster during the execution of the domain
model. This number should be close to the number of provisioned cores in
the cluster, indicating that all cores are utilized for computation.

M2: Utilized portion of the NFS [%]. To detect over-provisioning of the storage
size, we measure how much of the storage has been actually used to store
the resulting data of the simulation.

6.3 Selection and Mapping of Domain Model Parameters

A suitable size for the NFS S depends on the expected size of the simulation
outcome. This in turn depends on the total simulation time Tj,tq; and on the
frequency frite with which partial results are written do disk. Both are param-
eters of the domain model. Given an estimate for the size S,4,+ of the partial
results, the size for the distributed file system can be calculated as

g — Ttotal % Spart~ (1)

B .fwrite
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To pick a suitable virtual machine type T for the gateway and worker nodes
from the types TY PES offered by the IaaS provider, we need the number of
cores Neore, we can utilize. The number of cores we can utilize, depends on the
number of subdomains Ny, of the domain decomposition of the domain model
as described in Section 3. Hence, we pick the virtual machine type as

|t.cores — Ngyp|. (2)

min
teTYPES, t.cores<Ngup

The suitable number of worker nodes N, we can use for distributed computation
depends on the number of subdomains Ny, in the domain model, but also on
the virtual machine type T we picked in the last step. We can than calculate a
suitable number of worker nodes as
N,
N=[—21-1 (3)

T.cores
We subtract one, since the gateway node is also used for computation.

The following listing shows how the setting of parameter S is defined with
help of the XML serialization of the mapping language:

1 <mapping>

2 <targetParameter xsi:type=‘‘mapping:TargetParameter’’
3 name="‘‘size’’ type=‘‘INTEGER’’ unit=‘‘GB’’/>

4 <expression xsi:type=‘‘mapping:BinaryExpression’’

5 operator=‘ ‘MULTIPLY’’>

6 <partl xsi:type=‘‘mapping:BinaryExpression’’

7 operator=‘ ‘DIVIDE’’>

8 <partl xsi:type=‘‘mapping:FileContentExtractor’’

9 recipe=‘‘endTime ((\s+) (\d+(.\d+)?))#3’°

10 source=‘ ‘system/controlDict’’/>

11 <part2 xsi:type=‘‘mapping:FileContentExtractor’’
12 recipe=‘‘writeInterval ((\s+) (\d+(.\d+)?))#3°’
13 source=‘ ‘system/controlDict’’/>

14 </parti>

15 <part2 xsi:type=‘‘mapping:FileContentExtractor’’
16 recipe=‘‘partSize ((\s+) (\d+(.\d+)7))#3’’

17 source="system/partSizeDict"/>

18 </expression>
19 </mapping>

The TargetParameter size is set with help of a BinaryExpression that imple-
ments the multiplication of Equation 1 (Line 4-18). Tt itself contains a second
BinaryExpression (Line 6-14) that implements the division of the equation. The
simulation time Ty is extracted from the domain model with help of a File-
ContentFExtractor defined in the lines 8-10, and the write interval fy,ize iS ex-
tracted from the domain model with help of a FileContentExtractor defined in
the lines 11-13. The expected size of the partial results can not be automatically
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Table 2. Results for the evaluated and deployed OpenFOAM cases.

Deployed Cluster Metrics

Domain Model #VMs|#Cores|NFS Size| M1| M2
1|multiphase/twoPhaseEulerFoam /laminar /mixerVessel2D / 1 1 1 GB| 0.94| 32%
2|heatTransfer /buoyantBoussinesqSimpleFoam /iglooWithFridges/ 1 2 1 GB| 1.57| 55%
3|multiphase/multiphaseInterFoam/laminar/damBreak4phaseFine/ 1 4 3 GB| 3.79| 92%
4|combustion /fireFoam/les/oppositeBurningPanels/ 2 8 9 GB| 5.91| 81%
5|multiphase/interDyMFoam /ras/DTCHull/ 2 8 3 GB| 7.88/100%
6|multiphase/interDyMFoam /ras/test TubeMixer/ 4 16 1 GB|15.92| 26%

derived from the domain model. It is a good example for a parameter that needs
to be provided by the user or with help of runtime information from executing
the CF. Since we are not able to utilize runtime information yet, we provided the
expected size of the partial results as part of the domain model. It is read with
a FileContentExtractor from a file defined in the lines 15-17. Together with the
domain model itself, the parameters mapping is passed to the evaluator, which
evaluates the domain model and returns a list of initialized parameters for the
deployment model. These parameters are then used in the instantiation process.

6.4 Results and Discussion

We executed the mapping on the OpenFOAM cases which are provided by Table
1, and deployed the CF and the corresponding infrastructure automatically in
a small TaaS cloud based on OpenStack [13]. Then we executed the domain
model and collected the metrics defined in Section 6.2 with help of the cluster
monitoring tool Ganglia [16].

The results are summarized in Table 2. The number of deployed virtual
machines (#VMs), the total number of provisioned cores (#Cores) and the size
of the provisioned NFS is given. The total cluster size is automatically adjusted
to each domain model. The average load on the cluster (M1) indicates that
except for domain model 4 all provisioned cores were used for computation. In
Case 4 only 6 of the 8 provisioned compute cores were utilized. Since the abstract
model of our OpenFOAM cluster only allows the same virtual machine type for
all nodes in the cluster, and no virtual machine type with 6 compute cores is
available, 2 cores were over-provisioned. The framework was also able to adjust
the size of the NF'S. Since the size of the provisioned NFS is rounded to full GB
and the required size for the partial results is only a rough estimate, in most
cases not 100% of the NFS was utilized (M2).

While the presented evaluation only considers fairly small tutorial domain
models, it shows that we are able to automatically adjust the scale of the pro-
visioned resources to the computational requirements of the domain model. In
case of the size for the NFS, additional user input was required to provide an
estimate for the size of the partial results. However, this information could also
be automatically derived during runtime. We are going to extend our work to
use runtime information of the CF in the future.
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7 Related Work

Besides TOSCA, other cloud-related standardization attempts exist. In the MDE
community, the Open Cloud Computing Interface (OCCI) [17] received the most
attention. Merle et al. [18] defined a metamodel for OCCI with help of EMF to
provide a common basis for the generation and conformance testing of OCCI
tools. This metamodel is used by Paraiso et al. [19] to model the deployment of
applications with help of containers. Several works extend the Unified Modeling
Language (UML) to be able to capture cloud-specifics [20], [21], [22]. Bergmayr
et al. [4] show how to convert refined UML models to TOSCA templates. Their
approach is also based on an Ecore metamodel generated from the TOSCA XSD.
With the Cloud Application Management Framework (CAMF) [3], Loulloudes
et al. attempt to build a whole IDE to manage cloud applications with the help
of TOSCA.

Other approaches developed completely new cloud-specific modelling lan-
guages. Brandtzaeg et al. introduce CloudML [23], Silva et al. define the Cloud-
DSL[24], and Hamdaqa et al. present the StratusML [25]. All of theses languages
are specifiably tailored for the modeling of cloud applications. Bunch et al. define
Neptune [26], a domain specific language especially to deploy scientific applica-
tions in the cloud. While our approach in modeling the CF is similar to the
works introduced above, the definition of the mapping between the domain of
the user and the deployment model is new.

Similar to the concept we defined for the dynamic update of the deployment
during runtime, Ferry et al. [27] define a Models@Runtime approach for the
deployment of cloud applications. We will evaluate the work of Ferry et al. when
we extend our implementation to be able to utilize runtime information of the
CF.

8 Conclusion and Outlook

Cloud orchestration and configuration management enable fully automated de-
ployment of applications in the cloud. In our work, we combine the two tech-
nologies with MDE and a mapping mechanism to bridge the gap between the
domain model to be computed and the required cloud infrastructure to enable
appropriate scaling according to the domain model demands. The introduced
mechanism determines an appropriate scale of the infrastructure before it is
deployed in the cloud. In this paper we presented an initial evaluation of the
concept with help of a prototypical implementation and an example from the
domain of simulation science. Our initial experiences show that it is possible to
scale the infrastructure appropriately with information extracted from the do-
main model. However, some information on the runtime behaviour of the domain
model can not be predicted by static evaluations. As future work, we will move
towards the automated modification and adaptation of our deployment models
during runtime. The evaluation, we presented in this paper only covers an initial
case study. To fully show the validity of our approach, we will conduct more case
studies with software stacks from different domains.
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