
Georg-August-Universität

Göttingen
Zentrum für Informatik

ISSN 1612-6793
Nummer ZFI-BM-2005-19

Bachelorarbeit

im Studiengang ”Angewandte Informatik”

Development of a

Semantics-aware Editor for TTCN-3

as an Eclipse Plug-in

Jochen Kemnade

am Institut für

Informatik

Gruppe Softwaretechnik für Verteilte Systeme

Bachelor- und Masterarbeiten

des Zentrums für Informatik
an der Georg-August-Universität Göttingen

21. September 2005

Georg-August-Universität Göttingen
Zentrum für Informatik

Lotzestraße 16-18
37083 Göttingen

Germany

Tel. +49 (5 51) 39-1 44 14

Fax +49 (5 51) 39-1 44 15

Email office@informatik.uni-goettingen.de

WWW www.informatik.uni-goettingen.de

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine

anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Göttingen, den 21. September 2005

Bachelor’s Thesis

Development of a

Semantics-aware Editor for TTCN-3

as an Eclipse Plug-in

Jochen Kemnade

September 21, 2005

supervised by Prof. Dr. Grabowski

Software Engineering for Distributed Systems Group

Institute for Informatics

Georg-August-University Göttingen

Abstract

This thesis describes the process of extending a given parser for the TTCN-3
language by the ability to perform a basic semantic analysis on a given file and
integrating it into a plug-in for the eclipse platform. It deals with the principles
of parsing and semantic checking as well as showing the basic concept of devel-
oping a dedicated editor for a formal language. The integration of the parser
into the eclipse platform and strategy of verifying variable assignments are pre-
sented in detail. Among others, the plug-in features syntactic highlighting,
the annotation of errors in TTCN-3 and the validation of variable assignments
including nested expressions.

Zusammenfassung

Diese Arbeit beschreibt die Erweiterung eines bestehenden Parsers für TTCN-3
um grundlegende Funktionalität im Bereich der semantischen Analyse und seine
Integration in eine Programmerweiterung für die Eclipse Plattform. Neben den
Grundlagen des Parsens und der semantischen Überprüfung wird das Vorgehen
beim Entwickeln eines dedizierten Editors für eine formale Sprache dargestellt.
Die Einbindung des Parsers in Eclipse und die Vorgehensweise beim Validieren
von Variablenzuweisungen werden ausführlich beschrieben. Die Erweiterung un-
terstützt unter Anderem das Hervorheben von Schlüsselwörtern, das Anzeigen
von Fehlern in TTCN-3-Dateien und die Validierung von Variablenzuweisungen
inklusive geschachtelter Ausdrücke.

Contents

1 Introduction 6

2 Foundations 7

2.1 TTCN-3 . 7
2.2 Analyzing source code . 8

2.2.1 Parsers . 8
2.2.2 Parser generators and ANTLR 10
2.2.3 Semantic Analysis . 10

2.3 Eclipse . 11
2.3.1 Eclipse Plug-ins . 12
2.3.2 Eclipse’s plug-in development environment 13

3 Analysis and Design 14

3.1 Eclipse plug-in . 14
3.2 Semantic Analysis . 14

3.2.1 Variable declaration and assignments 15
3.2.2 Variable scopes . 17
3.2.3 Registering functions and types 17

4 Implementation 18

4.1 The editor . 18
4.1.1 Syntax highlighting . 20

4.2 Embedding the parser . 22
4.2.1 Parsing the editor’s content 22
4.2.2 Marking errors . 24

4.3 Outline view . 25
4.4 Semantic analysis . 28

4

4.4.1 Declaration of variables, types and operations 29
4.4.2 Assignments . 32
4.4.3 Assignment of nested expressions 35

5 Remarks on the plug-in 38

5.1 Installation . 38
5.1.1 Requirements . 38

5.2 Limitations . 38

6 Conclusion 39

Bibliography 40

List of Figures 42

Acronyms 43

5

1 Introduction

Testing is an important part in the process of developing software. The impor-
tance of having one’s applications tested grows with the failsafe performance
one wants the application to assure. Especially, that applies to widespread
systems like protocols and common software. The Test and Test Control No-
tation’s third edition (TTCN-3) is an intuitive and flexible language by means
of which tests can be specified.
Furthermore, the eclipse platform is known to be a powerful environment for
software development and editing source code. The platform is very extensible,
hence its functionality can be upgraded, for instance to have another language
supported, by developing a plug-in.
This thesis describes the process of combining both of those tools in a dedicated
editor for TTCN-3 as a plug-in to the eclipse platform. This extension should
base on a given parser [17], that was already capable of syntactic checking and
which was to be extended by the capability of basic semantic analysis.
The development’s objective was to provide an editor for TTCN-3 offering syn-
tax highlighting of keywords, comments and strings and the annotation of er-
rors. The latter relates to syntax on the one hand and semantics on the other.
As for the semantic analysis, the parser should check the validity of variable
assignments regarding type compatibility and visibility.
Chapter 2 of this thesis provides a brief overview of the TTCN-3 language
and the concepts of parsers and describes the procedure of integrating addi-
tional functionality into the eclipse platform. The 3rd chapter deals with the
demands on the plug-in’s functionality and explains the basic approach to se-
mantic checking. The actual implementation is exposed in chapter 4, which
contains explanations about the editor’s features and elaborately demonstrates
how the semantic checking was realized. Chapter 5 gives some remarks on the
installation of the plug-in and an outlook on which features are not yet imple-
mented. Finally, the thesis is concluded by the 6th chapter, which summarizes
its results.

6

2 Foundations

2.1 TTCN-3

TTCN-3 [12] is the Test and Test Control Notation in its third edition, which
was published by the European Telecommunications Standards Institute (ETSI)
and the International Telecommunication Union’s Telecommunication Stan-
dardization Bureau (ITU-T) in 2001. TTCN is a text-based language for spec-
ifying tests for a wide range of applications compromising protocols, software
modules and APIs. Due to its versatility, the Test and Test Control Notation
has been used to write tests for many widespread applications like GSM, DECT,
ATM or IPv6.
By its third version, TTCN has become more and more similar to modern
programming languages, hence it uses common concepts like global and local
variables, assignments, loops and methods, and is, therefore, easily both learn-
able and usable.
In addition to the textual form, TTCN-3 also offers a tabular and a graphical
presentation format, both of which are used to represent tests in a more intu-
itive and easily readable form, but as the scope of this thesis is semantic analysis
of TTCN-3 code, which has to be performed on the textual representation, it
only deals with the core language.
The communication between the test system and the components, that are to
be tested, is abstracted using ports, which can then be connected and accessed
inside a test.
A TTCN-3 module consists of a definitions part and an optional control part.
One or more modules result in a test.
In the module definition part, one may declare one’s module’s parameters, which
are similar to global variables in other programming languages, define one’s own
data types and functions and import definitions from other modules. Also the
concept of functions is common to other languages. They may have parame-
ters, a return type and local variables. Besides the general functions, that are

7

2 Foundations

mainly used to divide one’s tests’ code into units, there are two special types
of functions in TTCN-3, namely altsteps and testcases. Altsteps are used to
structure alternative behavior, whereas testcases are the portions that control
the test sequence. Functions and Altsteps may and testcases must specify the
type they use by a runs on <typename> clause.
The module control part, which may also define its own local variables, executes
the testcases specified in the definitions part.

2.2 Analyzing source code

When one writes a text, one uses a spell-checker to make sure that it does not
contain any typing errors. Afterwards, one could also run a grammar checker
to check for missing commas or wrongly used tenses. One wants everything
to be written correctly. The same applies if one has written the text in a
programming language, it is called source code, the spell-checker is termed
lexer and the grammar checker is a parser.

2.2.1 Parsers

Simply spoken, a parser is a program, that tries to transform a text input into
a tree structure, which can, in the case of a formal language, later on be used
for the semantic checking. A typical parser comprises two separate parts – the
lexer and the actual parser.
The lexer converts a given character stream (a text) into a stream of tokens,
which represent the basic units of an expression, like ”subject” or ”predicate” in
the case of a natural language. The mathematical expression 2 + 3 · 5 would for
example be transformed into a sequence of tokens like Number AddOp Number

MultOp Number. Among others, the lexer’s task is to verify a given input’s va-
lidity with respect to a specific language. For example, a lexer for binary strings
would report a lexical error processing 01 121 1011, because the symbol 2 does
not belong to the set of permitted characters in a binary expression.

8

2 Foundations

The generated token stream is now passed to the parser, which checks its syn-
tactic correctness verifying if the tokens form a valid expression. Reconsidering
mathematical expressions, the term 2 + + would be transformed into Number

AddOp AddOp by the lexer. This input would make the parser report an error
message like ”Unexpected token. Expecting number, found operator”, because
it expects, an addition operator to be surrounded by a number on each side.
If the given token stream is deemed to be valid, the parser transforms it into a
so called parse tree. The parse tree for 2 + 3 · 5 for instance would look similar
to the one shown in figure 2.1. This tree can then be evaluated and transformed

+

2 ·

3 5

Figure 2.1: The parse tree for a simple mathematical expression

by a tree parser or tree walker. Maintaining the example of mathematical ex-
pressions, the tree walker’s task could be the computation of the expression’s
result. Figure 2.2 shows how the lexer, the parser and the tree walker interact.

Character
Stream

Lexer
Token
Stream

Parser
Parse
Tree

Tree
walker

AST,
. . .

Figure 2.2: Relationship of lexer, parser and tree walker

More information on parsing can be obtained from [10, 15].

9

2 Foundations

2.2.2 Parser generators and ANTLR

When it comes to analyzing high-level programming languages, the parsers’
classes gain in complexity and size and writing those classes by hand becomes
less and less feasible. Also, as the process of lexing and parsing is very much
the same for different programming languages, the resulting lexer and parser
classes have a lot of commonalities. These are even increased by the fact that
many programming languages are comparable in their structures and have a
similar syntax.
Noticing those facts, programmers tried to automate the process of lexer and
parser building and they began to develop generator tools like Lex & Yacc [8]
and JavaCC [6] just to mention a few. Those tools mostly take some kind of
Backus-Naur Form (BNF) as their input and generate source code in common
programming languages like C, C++, Java or Python. This procedure saves a
lot of time, as there usually exists a BNF for every language, one could want
to develop a parser for. The parser generator that was used to generate the
lexer, parser and tree walker for the TTCN-3 plug-in is called ANTLR [1] and
is being developed by Terrence Parr since 1989.

2.2.3 Semantic Analysis

If the lexer and the parser process a given input file without any errors, the
resulting parse tree represents a syntactically correct file. But high level lan-
guages, programming languages in particular, also have to satisfy semantic

constraints. For instance the TTCN-3 expression var integer i := "foo";

is a variable declaration, which is syntactically correct as it consists of the var

keyword, a type, a variable identifier and an (optional) assignment of a value,
but obviously the assignment it is not valid.
As formal languages like TTCN-3 are deterministic and well-defined, they are
comparatively easy to check for semantic correctness, which does not apply to
natural languages, which tend to contain inconsistencies and ambiguous con-
structs.

10

2 Foundations

2.3 Eclipse

Eclipse [4] has become popular as an Integrated Development Environment
(IDE) for Java development, although the Java editing extension is just one
of many plug-ins which are available for eclipse. Figure 2.3 shows the broad

Figure 2.3: Eclipse’s architecture
source: http://help.eclipse.org/help31/topic/org.eclipse.platform.doc.isv/guide/arch.htm

outline of its architecture. The core platform is extensible by a growing variety
of plug-ins providing the ability to make eclipse a powerful tool for conveniently
editing sources in a wide range of programming or markup languages, accessing
version control repositories or developing extensive applications. There are
also plug-ins that provide completely different functionality, which is not at all
related to programming, like creating charts or playing music.

11

http://help.eclipse.org/help31/topic/ org.eclipse.platform.doc.isv/guide/arch.htm

2 Foundations

2.3.1 Eclipse Plug-ins

Virtually every part of eclipse that the user interacts with, such as editors for
different programming languages, can be considered a plug-in. The platform
only offers basic functionality such as opening and saving files or the marginal
resource perspective.
As eclipse is a framework, it offers an extensive collection of predefined parts,
hence developing plug-ins for the platform primarily means extending a set of
those classes with one’s own code. The TTCN-3 plug-in’s main editor is de-
rived from the org.eclipse.ui.texteditor.AbstractDecoratedTextEditor

template class for instance.
The core platform provides several extension points to which one can attach
one’s plug-in’s classes.
The plugin.xml file contains all the information about the plug-in, such as
the name, the version number and instructions on which spot the plug-in is
extending the eclipse platform. Figure 2.4 shows an excerpt from that file,

1 <ex t ens i on po int=”org . e c l i p s e . u i . e d i t o r s ”>
2 <ed i t o r
3 c l a s s=”ttcn3 . e d i t o r s . TTCN3MultiPageEditor”
4 c on t r i bu t o rC l a s s=”ttcn3 . e d i t o r s . TTCN3ActionContributor ”
5 de f au l t=”true ”
6 ex t ens i ons=”ttcn3 ”
7 i con=” i cons / ttcn3 . g i f ”
8 id=”ttcn3 . e d i t o r s . TTCN3Editor”
9 name=”TTCN−3 Editor ”>

10 </ ed i t o r>
11 </ extens i on>

Figure 2.4: Defining an extension

which states, that the plug-in’s main TTCN3MultiPageEditor class is integrated
into the org.eclipse.ui.editors extension point, stating that this should be
the default editor for files with a .ttcn3 extension and specifying the loca-
tion of an icon to indicate those files. The id can be used to reference the
TTCN3MultiPageEditor from other parts of the plugin.xml file.

12

2 Foundations

2.3.2 Eclipse’s plug-in development environment

The most comfortable way of developing an eclipse plug-in is to utilize the Plug-
in Development Environment (PDE), which is incidentally also a plug-in itself.
The PDE incorporates several wizards for setting up the plug-in’s basic struc-
ture letting one choose between some predefined templates for editors, toolbars
or dialogs.
Another important feature, that is offered by the PDE, is the possibility to
test and debug one’s own plug-ins by running and using them within a second
instance of eclipse that runs inside the first one. As eclipse has the capability
of hot swapping, changes to the plug-in’s code are directly affecting the running
platform.
Furthermore, the plug-in’s settings can be controlled using special dialogs in-
stead of having to write the plugin.xml file by hand.

13

3 Analysis and Design

3.1 Eclipse plug-in

As the editor was developed as an eclipse plug-in, it was desirable to take
advantage of some of the capabilities that make eclipse so comfortable and
powerful.
One of the most important things an editor for formal languages should provide
is syntactic highlighting, because that makes it easier to read the code and
therefore makes it easier to edit it. So the editor should highlight the language’s
keywords, comments and strings in different adjustable colors. Another helpful
feature is the annotations, that eclipse shows to mark the line, where an error
has been found. By creating those conspicuous markers, it becomes almost
impossible to overlook an error in one’s code.
Finally, the outline view, which always shows a summary of the editor’s content,
is very useful for staying aware of what the present file contains. For a TTCN-3
file, the outline should display a tree structure, showing the file’s modules as
root elements, each of which should accordingly embed its definition and control
parts and the functions, testcases and altsteps in its underlying nodes.

3.2 Semantic Analysis

The semantic analysis is to be performed on the parse tree, so it has do be done
by the tree walker, which, therefore, has to be able to validate the source code
by examining the parse tree and checking things like variable assignments.

14

3 Analysis and Design

3.2.1 Variable declaration and assignments

A simple variable assignment already needs a lot of checks, for instance the
variable has to be declared, must be of the appropriate type, and needs to be
accessible at the location, where the assignment is made.
In figure 3.1 the example variable declaration statement from page 10 is re-
vived, however this time it is split into both a declaration and an assignment
statement inside a function of a sample TTCN-3 module.

1 module ass ignmentTest
2 {
3 function bar (){
4 var integer i ;
5 i :=”foo ”;
6 }
7 }

Figure 3.1: A simple TTCN-3 module

After the parser has built the parse tree, the tree walker examines this tree one
node at a time, so when it reaches the assignment expression, it has already
visited the declaration. To recognize that the charstring "foo" cannot be as-
signed to the integer variable i, the tree walker has to store the information,
that i is declared as an integer. Respectively this applies to every variable and
every global parameter used throughout a TTCN-3 module. This information
is kept in a table, which is being attached to the root node of the scope that
contains the declaration.
In the example shown in figure 3.2, the tree walker first reaches the declaration’s
node and adds an entry like ”i : integer” to the table. As the tree parser gets
to the assignment, it looks up the variable i in the scope’s symbol table, where
it finds the information, that i is of type integer and, as i is being assigned a
charstring value, reports a semantic error.
In the case that the table does not contain an entry for the variable, that is
being referenced, that either means, that the variable is undefined or that it was
declared in a different scope and therefore is contained by a different symbol
table.

15

3 Analysis and Design

module assignmentTest

function bar()

declaration

variable

type

integer

name

i

assignment

variableref

identifier

i

charstring

"foo"

Figure 3.2: The simplified parse tree for the assignmentTest module

16

3 Analysis and Design

3.2.2 Variable scopes

Most modern programming languages contain the concept of (variable) scopes,
so does TTCN-3. A typical TTCN-3 module consists of multiple scope levels
and, therefore, its resulting parse tree contains several symbol tables. Apart
from the functions, there are also scopes for altsteps and testcases, the module
control part and for blocks of statements like loops.

1 module ass ignmentTest2
2 {
3 modulepar{
4 integer i ;
5 }
6 function bar (){
7 i :=”foo ”;
8 }
9 }

Figure 3.3: A module containing a scopes spanning assignment

Figure 3.3 shows a function that assigns a value to a variable, which was declared
as a global parameter of the containing module. This time, the tree walker does
not find an entry for i in the function’s symbol table, so it has to ascend the
tree looking for an overlying scope – in the example that would be the module
itself – and search its table for an entry about the variable i.

3.2.3 Registering functions and types

Besides the data types TTCN-3 offers, there is the possibility to create one’s
own types. So the tree parser also has to store information on which types
have been defined inside a module. As types are globally available throughout
a module, there is only one additional table needed for all of the module’s self-
defined types.
Another set of information has to be kept about the module’s functions, for a
variable can also be assigned the return value of a function or altstep, so each
module has a third table, in which the tree walker stores its operations’ names
and return values.

17

4 Implementation

The plug-in was developed in three basic steps, the first of which was the imple-
mentation of a core editor part, which only focused on keyword highlighting and
usual editors’ behavior, whereafter the existing TTCN-3 parser was integrated
into the plug-in, providing additional functionality such as syntactic checking
including creating error markers and displaying an overview of a file’s content
in the outline page. Finally, the ability to perform semantic analysis was added
to the tree walker.
A UML class diagram of the plug-in’s basic structure and its most important
classes is depicted in figure 4.1. The ttcn3.core.parser package contains the
parser classes including a specialized node type’s class out of which the parse
tree is built, namely the LocationAST. The package ttcn3.editors contains
those classes that constitute the editor. The TTCN3ReconcilingStrategy class
from that package associates the editor and the parser. The ttcn3.editors.

outline is responsible for creating an overview page for the file that is being
edited. The following sections contain ample descriptions about how those
classes working and how they collaborate.

4.1 The editor

The plug-in’s main class is the TTCN3Editor, that is derived from the org.

eclipse.ui.texteditor.AbstractDecoratedTextEditor, which already pro-
vides most of the functionality, that one expects a typical developer’s editor to
have. This includes basic tasks like copying, text searching and replacing and
extends in line numbering and resource markers. Those given features were
extended by the TTCN-3 specific parts.

18

 inputChanged(Viewer, Object, Object)

 getElements(Object): Object[]

TTCN3OutlineContentProvider

fEditor: TTCN3Editor

 TTCN3OutlinePage(TTCN3Editor)

 update()

 selectionChanged(SelectionChangedEvent)

TTCN3OutlinePage

ttcn3.editors.outline

fReconcilingStrategy: TTCN3ReconcilingStrategy

fOutlinePage: TTCN3OutlinePage

 TTCN3Editor(TTCN3MultiPageEditor)

 getDocument(): IDocument

 getReconcilingStrategy(): TTCN3ReconcilingStrategy

 getRootElements(): Object[]

 updateOutlinePage()

 displayErrorMessage(String)

TTCN3Editor

fEditor: TTCN3Editor

 activateEditor()

 gotoMarker()

 isDirty(): boolean

TTCN3MultiPageEditor

EditorEnvironment

fEditor: TTCN3Editor

 TTCN3ReconcilingStrategy(TTCN3Editor)

 setDocument(IDocument)

 reconcile(DirtyRegion, IRegion)

 reconcile(IRegion)

 getRootElements(): Object[]

 getRoot(): AST

TTCN3ReconcilingStrategy

org.eclipse.ui.texteditor.AbstractDecoratedTextEditor

ttcn3.editors

line: int

symbolTable: HashMap <K,V>

functionsTable: HashMap <K,V>

typesTable: HashMap <K,V>

 LocationAST(Token)

 getNthChild(int): AST

 getColumn(): int

 createSymbolTable()

 getParent(): LocationAST

 createFunctionsTable()

 createTypesTable()

LocationAST

«interface»

TTCN3TreeParserTokenTypes

secondRun: boolean

 addException(Exception)

 walkTree(AST): Vector

 error(AST, String)

 define(String, AST)

 declareFunction(String, int, LocationAST)

 declare(String, int, AST)

 getCorrespondingValueID(String): int

 lookupType(String, AST): AST

 getModuleNode(String, AST): AST

 lookupFunction(String, AST): int

 lookup(String, AST): int

 getRunsOnNode(LocationAST): AST

 getScope(AST): LocationAST

 getModuleRoot(AST): LocationAST

 assignValue(String, int, int, AST)

 assignOpcall(String, int, AST)

 assign(String, int, AST)

 resultType(AST): int

 getChildValueType(LocationAST): int

 TTCN3TreeParser()

 pr_TTCN3File(AST)F

TTCN3TreeParser

ttcn3.core.parser

resourceBundle: ResourceBundle

 TTCN3UIPlugin()

TTCN3UIPlugin

«import»

«import»

«import»

«import»

«import»

«import»

«import»

«import»

«access»

«instantiate»

«access»

Figure 4.1: A class diagram of the plug-in’s main structure

4 Implementation

4.1.1 Syntax highlighting

The syntax highlighting consists of keywords highlighting on the one hand, as
well as comments and strings highlighting on the other. The highlighting of key-
words is taken care of by the TTCN3CodeScanner, that extends the predefined
org.eclipse.jface.text.rules.RuleBasedScanner class. This class is basi-
cally a lexer, that transforms the words into a stream of ”keyword” and ”other”
tokens, by means of which the words are assigned a specific appearance. The
rules, which the RuleBasedScanner needs to distinguish between whitespaces,
keywords and ordinary text, are created within the scanner’s constructor, which

1 public TTCN3CodeScanner(
2 TTCN3ColorProvider aColorProvider) {
3 IToken keyword =
4 new Token (new TextAttr ibute (aColorProvider
5 . getColor (”keyword”) , null , SWT.BOLD)) ;
6 IToken other = new Token (new TextAttr ibute (aColorProvider
7 . getColor (”de f au l t ”))) ;
8 L i s t r u l e s = new ArrayLis t () ;
9 r u l e s . add (new WhitespaceRule(

10 new TTCN3WhitespaceDetector ())) ;
11 WordRule wordRule =
12 new WordRule(new TTCN3WordDetector() , other) ;
13 for (int i = 0 ; i < TTCN3 KEYWORDS. length ; i++) {
14 wordRule . addWord(TTCN3 KEYWORDS[i] , keyword) ;
15 }
16 r u l e s . add (wordRule) ;
17 IRule [] r e s u l t = new IRule [r u l e s . s i z e ()] ;
18 r u l e s . toArray (r e s u l t) ;
19 s e tRu l e s (r e s u l t) ;
20 }

Figure 4.2: Defining the rules for the syntax highlighting

is shown in figure 4.2. Those are a WhitespaceRule and a WordRule both of
which are provided by the org.eclipse.jface.text.rules package and which
are instantiated in lines 9–12.
The WhitespaceRule, which is used to separate text into words to transform

20

4 Implementation

them into tokens, is initialized with a TTCN3WhitespaceDetector, which com-
prises the solitary method isWhitespace (char aChar). The WordRule is in-
stantiated by passing a TTCN3WordDetector and a default token that is to be
returned, if none of its rules matches. The TTCN3WordDetectorprovides the is.
WordStart (char aChar) and the isWordPart (char aChar) methods, which
are used to check, whether the given character can belong to a TTCN-3 keyword
at all. As for TTCN-3, all keywords consist of alphabetic characters, so both
methods return the result of the predefined method java.lang.Character.

isLetter(aChar).
For each of the words, that are to be highlighted by the editor, an according
entry is registered in the word rule (lines 13–15). Namely that is one entry
for each of the keywords of the TTCN-3 language, which are specified in the
TTCN3_KEYWORDS array. The scanner is instructed to return the ”keyword”token
for all of them. Finally the rules are applied to the scanner in line 19.
The highlighting of comments and strings, however, is taken care of by the
TTCN3PartitionScanner, which divides the text into partitions using rules as
well. This scanner distinguishes those partitions using of a SingleLineRule

for strings, a MultiLineRule for multi line and an EndOfLineRule for single
line comments. The former rules are specified by giving their start and end
sequences, for example /* and */ delimit a multi line comment whereas strings
are delimited by quotation marks at both ends. The EndOfLineRule matches
from the given start sequence (//) to the end of the line. The colors, that are
to be used to indicate the particular parts of the code, are managed by the
TTCN3ColorProvider, that stores them in a HashMap, and can be adjusted in
the TTCN-3 editor’s preferences page. The assignmentTest2 module (figure 3.3)
looks figure 4.3 in the plug-in.

Figure 4.3: The plug-ins’s editor showing the assignmentTest2 module

21

4 Implementation

4.2 Embedding the parser

To make the eclipse platform aware of the TTCN-3 language to check a file for
errors and to show resource markers at the appropriate locations in particular,
the existing TTCN-3 parser was integrated into the plug-in. As ANTLR can
be set to output Java code, the generated files could just be merged into the
ttcn3.core.parser package.

4.2.1 Parsing the editor’s content

The eclipse platform offers a concept for integrating a parser into one’s plug-
in. The editor has to provide a class, that contains instructions on how the
parsing is to be performed. That class extends the org.eclipse.jface.text.

reconciler.IReconcilingStrategy interface and therefore has to implement
several methods which are called depending on whether the whole document
or only a specific region should be reconciled. When eclipse notices, that the
editor’s content has changed, it queries the editor for its associated reconciling
strategy and the platform calls this strategy’s appropriate method.
The TTCN-3 plug-in always checks the the editor’s complete input on a change,
hence the TTCN3ReconcilingStrategy relays the call of any of those methods
to its private parse() function, which processes the whole document and which
is partially given in figure 4.4.
In lines 8–10 the method initializes a lexer object with the editor’s input and
a parser object, that works on the lexer. The file is processed by a call to the
parser’s pr_TTCN3File() method in line 12, that reads the tokens from the
lexer one after another and builds the parse tree. The method can throw a
RecognitionException in the case that a syntactic error was detected or a
TokenStreamException that indicates that there were problems reading the
file. In that case, an error message is displayed in the plug-in’s status bar by
the log function in line 16. The tree is then retrieved by calling the parser’s
getAST() method in lines 20–21 and can finally be passed to the tree walker,
that examines it with respect to semantics. The parser throws a single exception
in the case of an error, whereas the tree parser returns a vector of exceptions
which represent the semantic errors which were detected in the file. In both
cases, the exceptions are saved in a vector, that will be used to create the
markers (line 28).

22

4 Implementation

1 private void parse () {
2 TTCN3Parser par s e r = null ;
3 TTCN3Lexer l e x e r = null ;
4 TTCN3TreeParser t r e ePa r s e r = null ;
5 Vector except i ons = new Vector () ;
6 AST root = null ;
7 i f (fEd i to r . getDocument () . getLength () > 0) {
8 l e x e r = new TTCN3Lexer(
9 new Str ingReader (fEd i to r . getDocument () . get ())) ;

10 par s e r = new TTCN3Parser(l e x e r) ;
11 try {
12 par s e r . pr TTCN3File () ;
13 } catch (Recogn i t ionExcept ion e) {
14 except i ons . add (e) ;
15 } catch (TokenStreamException e) {
16 TTCN3UIPlugin . l og (e) ;
17 }
18 i f (except i ons . isEmpty ()) {
19 t r e ePa r s e r = new TTCN3TreeParser () ;
20 Vector semant icExceptions = t r e ePa r s e r
21 . walkTree (par s e r . getAST ()) ;
22 i f (semant icExcept ions != null) {
23 except i ons . addAll (semant icExcept ions) ;
24 }
25 }
26 root = par s e r . getAST () ;
27 i f (! (except i ons . isEmpty ())) {
28 createMarkers (except i ons) ;
29 }
30 }
31 }

Figure 4.4: The parser is linked to the plug-in

23

4 Implementation

4.2.2 Marking errors

That vector is passed to the createMarkers (Vector exceptions) method,
which, for each of the vector’s exception elements, invokes the createMarker

(IFile aFile, RecognitionException anException) function (figure 4.5)
together with a handle to the file, that is being edited. This method ac-

1 private void createMarker (I F i l e aFi l e ,
2 Recogni t ionExcept ion anException) {
3 Map markerAttr ibutes = new Hashtable () ;
4 markerAttr ibutes . put (IMarker .SEVERITY, new I n t e g e r (
5 IMarker .SEVERITY ERROR)) ;
6 markerAttr ibutes . put (IMarker .PRIORITY, new I n t e g e r (
7 IMarker .PRIORITY HIGH)) ;
8 Marke rUt i l i t i e s . setMessage (markerAttr ibutes ,
9 anException . getMessage ()) ;

10 Marke rUt i l i t i e s . setLineNumber (markerAttr ibutes ,
11 anException . getL ine ()) ;
12 try {
13 Marke rUt i l i t i e s . createMarker (aFi l e , markerAttr ibutes ,
14 IMarker .PROBLEM) ;
15 } catch (CoreException e) {
16 TTCN3UIPlugin . l og (e) ;
17 }
18 }

Figure 4.5: Marking a parse error in a file

quires the error’s data from the exception and creates a set of attributes for
the marker that is to be created in lines 3–11. Afterwards it makes use of the
org.eclipse.ui.texteditor.MarkerUtilities class to have an error marker
with the appropriate settings created for the given resource in lines 12–15 again
logging a potential CoreException to the plug-in’s status bar (line 16).
The markers are shown as annotations in the editor window as shown in fig-
ure 4.3 and as problems in the problem view which is depicted in figure 4.6.

24

4 Implementation

Figure 4.6: The problem view for the assignmentTest2 module

4.3 Outline view

Integrating the parser into the plug-in was also necessary for the creation of the
outline page, which is generated out of the parse tree. For the assignmentTest2

Figure 4.7: The outline view for the assignmentTest2 module

module the outline view would look like shown in figure 4.7. The package
ttcn3.editors.outline, which takes care of the outline view for a TTCN-3
file’s contents, comprises three parts.
The TTCN3OutlineContentProvider, which extends the org.eclipse.jface.

viewers.ITreeContentProvider template class, is responsible for determining
the file’s most important structural units, which were described in section 3.1,
by recursively examining the parse tree.

25

4 Implementation

For each node, the hasChildren (Object anElement) function checks, whether
anElement has children that are of a type, which is to be listed in the outline
view. The getChildren (Object anElement) function, shown in figure 4.8

1 public Object [] getChi ldren (Object anElement) {
2 Vector theChi ldren = new Vector () ;
3 i f (anElement instanceof AST
4 && ((AST) anElement) . g e tF i r s tCh i l d () != null) {
5 AST aChild = ((AST) anElement) . g e tF i r s tCh i l d () ;
6 do {
7 int type = aChild . getType () ;
8 i f (type == TTCN3ParserTokenTypes . ModuleControlPart
9 | | type == TTCN3ParserTokenTypes

10 . ModuleDef in i t ionsPart
11 | | type == TTCN3ParserTokenTypes .TTCN3Module) {
12 theChi ldren . add (aChild) ;
13 } else i f (type ==
14 TTCN3ParserTokenTypes . ModuleDef in i t ion) {
15 int subtype = aChild . g e tF i r s tCh i l d () . getType () ;
16 i f (i sFunct ionDef (subtype)) {
17 theChi ldren . add (aChild) ;
18 }
19 }
20 } while ((aChild = aChild . g e tNextS ib l i ng ()) != null) ;
21 }
22 return theChi ldren . toArray () ;
23 }

Figure 4.8: Determining which nodes are to be shown in a file’s outline view

checks the type of each of anElement’s children and returns the ones that are
to be taken into account for the outline page’s creation. The loop in lines 6–20
iterates over every child adding them to the set of considered nodes if they
represent modules or their control or definition parts (lines 8–12). As for mod-
ule definitions, which are the parent nodes for testcases, altsteps and functions
among others, the tree parser determines its child’s type in line 15 and, if it
represents one of the function types (line 16), the appropriate module definition
is also added to the set in line 17. Finally, the set is returned in line 22.

26

4 Implementation

The outline page’s elements’ labels are set by the TTCN3OutlineLabelProvider,
which specifies both the labels’ text and its icon that is to be shown in the out-
line view. Those can be queried calling the getImage (Object anElement) or
the getText (Object anElement) function respectively. The image depends
on the node’s type, being a special one for testcases, altsteps or functions and
a default one for modules and their definition and control parts. The text is
either the name for methods, or the textual representation of the node’s type.
Finally, the TTCN3OutlinePage, that is derived from the abstract org.eclipse.
ui.views.contentoutline.ContentOutlinePage, links the provider classes to
the outline page’s tree viewer. Furthermore, it takes care of setting the editor’s
focus to a specific part of its content, if the corresponding label is clicked in the
outline view.

27

4 Implementation

4.4 Semantic analysis

As already mentioned in section 2.2.1, all the semantic checking is done by
the tree parser, so its class has to be extended by several methods, which are
called, when the tree walker reaches a node, that is relevant for the semantics
of a TTCN-3 file. Those methods are stated in the tree parser’s grammar file’s
action section, which is unalteredly transferred into the generated Java code.
The functions are called from within the tree parser’s definition, that is specified
in the file TTCN3TreeParser.g and from which figure 4.9 shows an excerpt.

1 pr S ing l eVar In s tance : {
2 de c l a r e (((LocationAST) t) . getNthChild (2) . getText () ,
3 ((LocationAST) t) . getParent () . getParent ()
4 . getNthChild (3) . getType () ,
5 t) ; }
6 #(S ing l eVar In s tance
7 p r I d e n t i f i e r (pr ArrayDef)? (
8 { a s s i gn (((LocationAST) t) . getParent () . getNthChild (2)
9 . getText () ,

10 ((LocationAST) t) . getNthChild (2) . getType () , t) ;
11 }
12 pr Express ion)?)
13 ;

Figure 4.9: Function calls invoked when parsing a variable instantiation

During the process of semantic checking the tree has to be traversed twice.
This is necessary because of the possibility to import specifications from other
modules, which could be defined in a subsequent section of the file1. As that
section would not have been processed by the tree parser when it reaches a
node in a module that uses definitions from the imported one, it would not be
equipped with the necessary tables so far. So the tree parser processes the tree
one time to build up the symbols’, functions’ and types’ tables and once again
to check the variable assignments.

1In fact, the TTCN-3 standard does not regulate how modules are to be organized in files.

Hence, the editor allows several modules to be placed inside a single file

28

4 Implementation

4.4.1 Declaration of variables, types and operations

At the first pass, a symbol table is created for every scope’s root node and
the modules’ root nodes are also provided with a functions and a types table.
Each of those tables is of type java.util.HashMap. Furthermore all the mod-
ules’ variable declarations are registered in the corresponding scope’s symbol
table. In the parse tree, that is built by the TTCN-3 parser, a variable decla-
ration’s root node is a SingleVarInstance. Figure 4.9 shows the part of the
tree walker’s grammar file, which contains the instructions on how to process a
node of that type.

VarInstance

Type

PredefinedType

IntegerKeyword

VarList

SingleVarInstance

Identifier

i

Expression

SingleExpression

Primary

Value

PredefinedValue

IntegerValue

1

SingleVarInstance

Identifier

j

Figure 4.10: The parse tree for variable declarations

The parse tree for the variable declaration var integer i:=1, j;, as depicted
in figure 4.10, would be processed in three steps, two for the declaration of the
variables and one for the assignment.

29

4 Implementation

As for the declarations, the function declare (String tokenName, int type,

AST anAST) is called, which is shown in figure 4.11. The required arguments

1 private void de c l a r e (S t r ing tokenName , int type ,
2 AST anAST) {
3 i f (secondRun) return ;
4 LocationAST scope = getScope (anAST) ;
5 int p r ev i ou sDe f i n i t i on = lookup (tokenName , anAST) ;
6 i f (p r ev i ou sDe f i n i t i on != EOF){
7 e r r o r (anAST,
8 ”Dupl i cate d e f i n i t i o n o f \””+tokenName+”\””) ;
9 }

10 i f (type == TypeReference
11 && anAST . getType () == Sing l eVar In s tance){
12 St r ing typeName = ((LocationAST)anAST) . getParent ()
13 . getParent () . getNthChild (5) . getText () ;
14 AST theType = lookupType (typeName , anAST) ;
15 i f (theType . getType () == SubTypeDef){
16 type = ((LocationAST) theType) . getNthChild (3)
17 . getType () ;
18 }
19 }
20 St r ing typeName = TTCN3TreeParserTokenTypes . class

21 . g e tF i e l d s () [type −2] . getName () ;
22 i f (typeName . endsWith (”Keyword”)) {
23 type = getCorrespondingValueID(typeName) ;
24 }
25 scope . getSymbolTable () . put (tokenName , new I n t e g e r (type)) ;
26 }

Figure 4.11: Registering a variable in the symbol table

for the method are retrieved from the parse tree by the tree walker as shown in
figure 4.9. Since TTCN-3 does not allow the declaration of multiple variables
with the same name, tokenName is first verified not yet to be declared by trying
to find it in the parse tree by using the lookup function in line 5. If the variable
has not been introduced before, it is registered in its enclosing scope’s symbol
table. In the case that the variable’s type is derived from a predefined one, it

30

4 Implementation

is registered to be of that supertype (lines 15–18).
The method getCorrespondingValueID (String typeName) in line 23 is re-
quired, because of the different nodes created for a type’s keyword and a value
of corresponding type, for instance ”IntegerKeyword” and ”IntegerValue” like
in the example on page 29. The method uses Java Reflection [9] in lines 20–
21 to determine the value of the correlating type’s token constant from the
TTCN3TreeParserTokenTypes interface.
Type and operation declarations are treated analogously by making use of the
module’s types or operations tables respectively. After the first pass, the parse

1 module simpleModule
2 {
3 modulepar{
4 integer i ;
5 }
6 function foo () return integer{
7 var integer j := i ;
8 return j ;
9 }

10 }

Figure 4.12: A TTCN-3 module with a parameter and a function

tree for the module shown in figure 4.12 would be extended by a symbol and a
functions table for the module node and a symbol table for the function. The
resulting nodes with their tables are depicted in figure 4.13.

symbol table
i : integer

simpleModule
functions table
foo : integer

symbol table
j : integer

foo

Figure 4.13: A module and a function node with their tables

31

4 Implementation

4.4.2 Assignments

During the second pass, the tree walker validates every variable assignment.
The particular variable is looked up in the scope’s symbol table by the lookup

(String tokenName, AST anAST) function (figure 4.14). The auxiliary method
getScope (AST anAST) (line 2) returns the root node of anAST’s enclosing
scope. At first, this node’s symbol table is checked for an entry for the variable
called tokenName and, if there is one, its according type is returned (lines 3–7).
If the table does not contain an entry for this variable, the further procedure
depends on the scope’s type.
If the scope belongs to a testcase or a function or altstep that runs on a specific
component type, which is then referenced by a runs on <typename> statement,
the method may as well use variables, which are declared in that component
type. In this case, the tree walker makes use of the method getRunsOnNode

(AST anAST) in line 3, which returns the node, that contains the information
on which type the specific method is to be executed. The type’s name is then
looked up in the module’s types table (lines 21–22) and, if it has been defined,
the tree walker proceeds with querying the referenced type’s definition’s symbol
table for an entry about that variable (lines 28–29). Otherwise, the tree parser
recursively continues its search upwards the tree (line 31) until either it finds
an entry or it ends up at the file’s root node.
Assuming that the specific variable was declared previously, the tree parser
calls the assign (String tokenName, int type, AST anAST) method, that
is used to distinguish whether the assignment is a value or variable reference
or a function reference. In the case of either reference, the tree parser calls the
lookup function for a variable or the lookupFunction for a function reference
and deals with the return value as if a value of that type was directly to be
assigned to the variable. The tree walker now needs to check, if the assigned
value’s type matches the variable’s type by calling the assignValue function,
which is partially given in figure 4.15.
This method compares the variable’s type with the type of the expression that
is to be assigned and returns in line 7, if they match. Timers need a special
treatment here, because the parser does not distinguish between ordinary float
values and those, that are being assigned to a timer. So, for a timer, the method
would be called with type being FloatValue and previousDefinition being
TimerValue. This case is handled in lines 3–6. If the assigned value is a vari-

32

4 Implementation

1 int lookup (St r ing tokenName , AST anAST) {
2 LocationAST scope = getScope (anAST) ;
3 i f (scope . getSymbolTable () != null

4 && scope . getSymbolTable () . containsKey(tokenName)){
5 return ((I n t e g e r) scope . getSymbolTable ()
6 . get (tokenName)) . intValue () ;
7 }
8 i f (scope . getParent () != null){
9 AST runsOnNode = null ;

10 switch (scope . getType ()){
11 case FunctionDef :
12 case AltstepDef :
13 runsOnNode = getRunsOnNode(scope) ;
14 i f (runsOnNode == null) {
15 return lookup (tokenName , scope . getParent ()) ;
16 }
17 case TestcaseDef :
18 runsOnNode = getRunsOnNode(scope) ;
19 St r ing runsOnName = ((LocationAST) runsOnNode)
20 . getNthChild (3) . getText () ;
21 AST runsOnTargetNode =
22 lookupType (runsOnName , getModuleRoot(anAST)) ;
23 i f (runsOnTargetNode == null){
24 e r r o r (anAST, ”Type ” + runsOnName
25 + ” could not be found ”) ;
26 break ;
27 }
28 return lookup (tokenName ,
29 runsOnTargetNode . g e tF i r s tCh i l d ()) ;
30 default :
31 return lookup (tokenName , scope . getParent ()) ;
32 }
33 }
34 return EOF;
35 }

Figure 4.14: Looking up a variable declaration

33

4 Implementation

1 private void ass ignValue (S t r ing tokenName , int type ,
2 int p r ev i ou sDe f i n i t i on , AST anAST) {
3 i f (p r ev i ou sDe f i n i t i on == TimerValue){
4 ass ignValue (tokenName , type , FloatValue , anAST) ;
5 return ;
6 }
7 i f (type == pr ev i ou sDe f i n i t i on) return ;
8 else i f (type == EnumeratedValue){
9 St r ing r e f e r en c edVa r i ab l e = ((LocationAST)anAST)

10 . getNthChild (7) . getText () ;
11 int re fe rencedVar iab leType =
12 lookup (r e f e r encedVar iab l e , anAST) ;
13 i f (re fe rencedVar iab leType == EOF){
14 e r r o r (anAST, ”Var iab le ”+ re f e r en c edVa r i ab l e
15 +” was not found ”) ;
16 return ;
17 }
18 ass ignValue (tokenName , re fe rencedVar iab leType ,
19 p r ev i ou sDe f i n i t i on , anAST) ;
20 return ;
21 }
22 e r r o r (anAST , ”Incompat ib le types f o r ass ignment . Found ”
23 + TTCN3TreeParserTokenTypes . class

24 . g e tF i e l d s () [type −2] . getName () +” , expec t ing ”
25 + TTCN3TreeParserTokenTypes . class

26 . g e tF i e l d s () [p r e v i ou sDe f i n i t i on −2] . getName ()) ;
27 }

Figure 4.15: Verifying the assignment of a value to a variable

34

4 Implementation

able reference, its type is looked up in lines 11–12 and, if it was declared, the
assignValue calls itself giving the referenced variable’s type as the type that
is to be assigned (lines 18–19).

4.4.3 Assignment of nested expressions

Of course, not only can one assign simple values to variables, but also nested
statements like i:=1*1; are possible. Figure 4.16 depicts a parse tree similar to

Assignment

VarRef

Identifier

i

+

Primary

Integer

2

·

Primary

Integer

3

Primary

Charstring

foo

Figure 4.16: The simplified parse tree for an assignment of a nested expression

the one that would be built for the statement i:=2+3*"foo". To have the tree
walker process those nested statements, another auxiliary method is needed to
determine the type of the value that is yielded by computing the expression and
then proceed the same way as if a single value was assigned.

35

4 Implementation

1 private int resu l tType (AST anAST){
2 int l e f tType = l e f tCh i l d . getType () ;
3 int r ightType = r ightCh i ld . getType () ;
4 i f (l e f tType != Primary){
5 l e f tType = resu l tType (l e f tCh i l d) ;
6 }
7 i f (r ightType != Primary){
8 r ightType = resu l tType (r i gh tCh i ld) ;
9 }

10 i f (l e f tType == EOF | | r ightType == EOF) return EOF;
11 i f (l e f tType == Primary) le f tType =
12 getChildValueType (l e f tCh i l d) ;
13 i f (r ightType == Primary) r ightType =
14 getChildValueType (r i gh tCh i ld) ;
15 i f (l e f tType == EOF | | r ightType == EOF) return EOF;
16 switch (anAST . getType ()){
17 case PLUS:
18 case MINUS:
19 case STAR:
20 case SLASH:
21 i f (l e f tType == rightType){
22 i f (l e f tType == IntegerValue
23 | | l e f tType == FloatValue){
24 return l e f tType ;
25 }
26 }
27 e r r o r (anAST,
28 ”Incompat ib le types f o r a r i thmet i c ope ra t i on ”) ;
29 break ;
30 }
31 return EOF;
32 }

Figure 4.17: Computing a nested expression’s result’s type

The method resultType (AST anAST), which is partially shown in figure 4.17,
returns the type of the value resulting from concatenating anAST’s children with
the operator that is specified in the root node. For each child, the type is deter-

36

4 Implementation

mined, depending on its kind, by a recursive call of the resultType function in
lines 4–9 for a child that represents a subexpression or by calling the auxiliary
getChildValueType method (lines 11–14) that returns the type of a ”Primary”
node’s child, which again can either be a definite value or a variable or function
reference.
Once the operands’ types are determined, the operation’s result type is com-
puted depending on the operator. The excerpt shown in figure 4.17 deals with
arithmetic operators, that can be applied to either integer or float type operands
and which returns a result of the respective type (lines 21–26). Besides the
arithmetic terms, the resultType function can also process modulo, shift and
rotate operations.

37

5 Remarks on the plug-in

5.1 Installation

To install the TTCN-3 plug-in, just unpack the given ZIP file. For a system-wide
installation, extract it into the eclipse root directory. On linux systems that
is supposed to be /usr/share/eclipse for example. For a per-user installa-
tion, use the user’s appropriate eclipse directory (mostly ~/.eclipse/eclipse)
instead.

5.1.1 Requirements

Besides the eclipse platform itself, the plug-in requires the ANTLR plug-in for
eclipse to be installed. That plug-in and information on how to install it can
be obtained from the http://antlreclipse.sourceforge.net web site.

5.2 Limitations

The plug-in’s semantic checking abilities are limited to variable assignments so
far. The following list gives some examples of what is not being supported yet.

• type checking on comparisons
e.g. if (4 == true) {...}

• importing from modules in other files
• checking return types of functions
• checking assignments to be in the proper range for subtypes
type integer NegativeInt (-infinity .. -1);

var NegativeInt := 0;

• forbid overwriting of constants

38

http://antlreclipse.sourceforge.net

6 Conclusion

By the steps depicted in the preceding chapters, the aims, that were set in the
introduction, were achieved: The plug-in’s editor integrates with the platform
providing syntax highlighting in customizable colors, which is one of the most
important features easing the editing of source code. Besides that, the plug-in
shows an overview of the file being worked on in the outline page thus allow-
ing fast navigation between the most important parts of a file. Furthermore, it
shows parse errors as annotations in the editor’s vertical annotation ruler as well
as in the problem view, both of which conspicuously indicate errors throughout
a file.
As for the semantic analysis, the plug-in detects the use of undeclared or in-
accessible variables, assignments of values of an unsuitable type and misused
operands in arithmetic, modulo, shift and rotate expressions. In addition, it
supports importing variables and type definitions from other modules in the
same file.
The plug-in utilizes the powerful environment of the eclipse platform and ex-
tends it by the capability to deal with source code in the TTCN-3 language.
As a result it provides a comfortable way to edit TTCN-3 files making the task
of test specification more convenient and less error-prone.

39

Bibliography

[1] ANTLR parser generator.
http://www.antlr.org.

[2] ANTLR plugin for eclipse.
http://antlreclipse.sourceforge.net.

[3] Eclipse platform API specification.
http://www.eclipse.org/documentation/html/plugins/

org.eclipse.platform.doc.isv/doc/reference/api/.

[4] Eclipse.org website.
http://eclipse.org.

[5] Hosting your own language in eclipse.
http://www.awprofessional.com/articles/article.asp?p=370625.

[6] Javacc project home.
https://javacc.dev.java.net.

[7] JSEditor eclipse plug-in.
http://jseditor.sourceforge.net.

[8] The lex & yacc page.
http://dinosaur.compilertools.net.

[9] The reflection API.
http://java.sun.com/docs/books/tutorial/reflect.

[10] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullmann.
Compilerbau, volume 1.
Oldenbourg Wissenschaftsverlag GmbH, second edition, 1999.

40

http://www.antlr.org
http://antlreclipse.sourceforge.net
http://www.eclipse.org/documentation/html/plugins/
org.eclipse.platform.doc.isv/doc/reference/ api/
http://eclipse.org
http://www.awprofessional.com/articles/article.asp?p=370625
https://javacc.dev.java.net
http://jseditor.sourceforge.net
http://dinosaur.compilertools.net
http://java.sun.com/docs/books/tutorial/reflect

Bibliography

[11] Berthold Daum.
Java-Entwicklung mit Eclipse 3.
dpunkt.verlag GmbH, second edition, 2004.

[12] ETSI European Standard (ES) 201 873-1 V3.1.1 (2005-06).
The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core

Language.
European Telecommunications Standards Institute (ETSI), Sophia-

Antipolis (France), also published as ITU-T Recommendation Z.140,
http://www.ttcn3.org/doc/es_20187301v030101p.pdf.

[13] Jens Grabowski and Michael Schmitt.
TTCN-3 - Eine Sprache für die Spezifikation und Implementierung von

Testfällen.
’at - Automatisierungstechnik’, Oldenbourg Verlag, 3/2002:A5–A8, 2002.

[14] Jens Grabowski and Andreas Ulrich.
An Introduction to TTCN-3.
Tutorial, Proceedings of ’The TTCN-3 User Conference’ at the European

Telecommunications Standards Institute (ETSI), Sophia-Antipolis
(France), May 3-5, 2004, May 2004.

[15] Dick Grune, Henri E. Bal, Ceriel J.H. Jacobs, and Koen G. Langendoen.
Modern Compiler Design.
John Wiley & Sons Ltd, 2000.

[16] Stefan Hendrata.
Standardisiertes Testen mit TTCN-3.
automotive, 09-10/2004:64–65, 2004.

[17] Wei Zhao.
Entwicklung eines Parsers für TTCN-3 Version 3 unter Verwendung des

Parsergenerators ANTLR.
Bachelor’s thesis, Georg-August-Universität Göttingen, 2005.

41

http://www.ttcn3.org/doc/es_20187301v030101p.pdf

List of Figures

2.1 The parse tree for a simple mathematical expression 9
2.2 Relationship of lexer, parser and tree walker 9
2.3 Eclipse’s architecture . 11
2.4 Defining an extension . 12

3.1 A simple TTCN-3 module . 15
3.2 The simplified parse tree for the assignmentTest module 16
3.3 A module containing a scopes spanning assignment 17

4.1 A class diagram of the plug-in’s main structure 19
4.2 Defining the rules for the syntax highlighting 20
4.3 The plug-ins’s editor showing the assignmentTest2 module 21
4.4 The parser is linked to the plug-in 23
4.5 Marking a parse error in a file . 24
4.6 The problem view for the assignmentTest2 module 25
4.7 The outline view for the assignmentTest2 module 25
4.8 Determining which nodes are to be shown in a file’s outline view 26
4.9 Function calls invoked when parsing a variable instantiation . . . 28
4.10 The parse tree for variable declarations 29
4.11 Registering a variable in the symbol table 30
4.12 A TTCN-3 module with a parameter and a function 31
4.13 A module and a function node with their tables 31
4.14 Looking up a variable declaration 33
4.15 Verifying the assignment of a value to a variable 34
4.16 The simplified parse tree for an assignment of a nested expression 35
4.17 Computing a nested expression’s result’s type 36

42

Acronyms

ANTLR Another Tool for Language Recognition

API Application Programming Interface

ATM Asynchronous Transfer Mode

BNF Backus-Naur Form

DECT Digital European / Enhanced Cordless Telephone

ETSI European Telecommunications Standards Institute

GSM Global System for Mobile Communication

IPv6 Internet Protocol, Version 6

ITU-T International Telecommunication Union’s Telecommunication Standard-
ization Bureau

IDE Integrated Development Environment

PDE Plug-in Development Environment

TTCN Test and Test Control Notation

43

	1 Introduction
	2 Foundations
	2.1 TTCN-3
	2.2 Analyzing source code
	2.2.1 Parsers
	2.2.2 Parser generators and ANTLR
	2.2.3 Semantic Analysis

	2.3 Eclipse
	2.3.1 Eclipse Plug-ins
	2.3.2 Eclipse's plug-in development environment

	3 Analysis and Design
	3.1 Eclipse plug-in
	3.2 Semantic Analysis
	3.2.1 Variable declaration and assignments
	3.2.2 Variable scopes
	3.2.3 Registering functions and types

	4 Implementation
	4.1 The editor
	4.1.1 Syntax highlighting

	4.2 Embedding the parser
	4.2.1 Parsing the editor's content
	4.2.2 Marking errors

	4.3 Outline view
	4.4 Semantic analysis
	4.4.1 Declaration of variables, types and operations
	4.4.2 Assignments
	4.4.3 Assignment of nested expressions

	5 Remarks on the plug-in
	5.1 Installation
	5.1.1 Requirements

	5.2 Limitations

	6 Conclusion
	Bibliography
	List of Figures
	Acronyms

